Finding direct partition bijections by two-directional rewriting techniques
نویسنده
چکیده
One basic activity in combinatorics is to establish combinatorial identities by so-called ‘bijective proofs,’ which consists in constructing explicit bijections between two types of the combinatorial objects under consideration. We show how such bijective proofs can be established in a systematic way from the ‘lattice properties’ of partition ideals, and how the desired bijections are computed by means of multiset rewriting, for a variety of combinatorial problems involving partitions. In particular, we fully characterizes all equinumerous partition ideals with ‘disjointly supported’ complements. This geometrical characterization is proved to automatically provide the desired bijection between partition ideals but in terms of the minimal elements of the order 7lters, their complements. As a corollary, a new transparent proof, the ‘bijective’ one, is given for all equinumerous classes of the partition ideals of order 1 from the classical book “The Theory of Partitions” by G.Andrews. Establishing the required bijections involves two-directional reductions technique novel in the sense that forward and backward application of rewrite rules heads, respectively, for two di?erent normal forms (representing the two combinatorial types). It is well-known that non-overlapping multiset rules are con@uent. As for termination, it generally fails even for multiset rewriting systems that satisfy certain natural invariant balance conditions. The main technical development of the paper (which is important for establishing that the mapping yielding the combinatorial bijection is functional) is that the restricted two-directional strong normalization holds for the multiset rewriting systems in question. c © 2004 Elsevier B.V. All rights reserved.
منابع مشابه
The Nature of Partition Bijections Ii. Asymptotic Stability
We introduce a notion of asymptotic stability for bijections between sets of partitions and a class of geometric bijections. We then show that a number of classical partition bijections are geometric and that geometric bijections under certain conditions are asymptotically stable.
متن کاملMacMahon’s Partition Analysis V: Bijections, Recursions, and Magic Squares
A significant portion of MacMahon’s famous book “Combinatory Analysis” is devoted to the development of “Partition Analysis” as a computational method for solving problems in connection with linear homogeneous diophantine inequalities and equations, respectively. Nevertheless, MacMahon’s ideas have not received due attention with the exception of work by Richard Stanley. A long range object of ...
متن کاملAn algorithm to describe bijections involving Dyck paths
We use an algorithm to define bijections involving Dyck paths. This algorithm is parametrized by rewriting rules and is similar to the derivation of a word in a context-free grammar. The bijections are variations of a classical one which is based on the insertion of a peak in the last descent. A systematic study of the algorithms parametrized by a single rewriting rule leads to 6 bijections, ta...
متن کاملPartition identity bijections related to sign-balance and rank
In this thesis, we present bijections proving partitions identities. In the first part, we generalize Dyson's definition of rank to partitions with successive Durfee squares. We then present two symmetries for this new rank which we prove using bijections generalizing conjugation and Dyson's map. Using these two symmetries we derive a version of Schur's identity for partitions with successive D...
متن کاملTwo optimal algorithms for finding bi-directional shortest path design problem in a block layout
In this paper, Shortest Path Design Problem (SPDP) in which the path is incident to all cells is considered. The bi-directional path is one of the known types of configuration of networks for Automated Guided Vehi-cles (AGV).To solve this problem, two algorithms are developed. For each algorithm an Integer Linear Pro-gramming (ILP) is determined. The objective functions of both algorithms are t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 285 شماره
صفحات -
تاریخ انتشار 2004